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Case Analysis

Some proofs proceed by tedious case analysis (the method of exhaustion).

For example, here is part of Figure 61 (!) in the proof of the four-color
conjecture by Appel-Haken-Koch in 1977.
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Case Analysis

Other examples:

There exists no finite projective plane of order 10 (Lam-Thie-Swiercz,
1989) (2000 hours of time on a Cray)

Kepler’s conjecture about sphere packing in three dimensions (Hales,
1998): no packing of equally-sized spheres can beat cubic packing in
density (250 pages, 3 gigabytes of programs)

Boolean Pythagorean triples problem (Heule-Kullmann-Marek, 2016):
cannot avoid x[a] = x[b] = x[c] for a, b, c satisfying a2 + b2 = c2 in
infinite binary words x (4 CPU years on supercomputer, 200 terabyte
proof)

Much as we might like to, we can’t avoid the need for case analysis...
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Sometimes Things are True for No Good Reason

Paul Erdős (1913–1996) liked to talk about
The Book, the place where a supreme being
has recorded the most elegant proof of
every mathematical theorem.

But we know this is a fantasy because

Some true statements have no proofs

Some true statements have no short proofs
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Some True Statements Have No Proofs

For example, “This statement has no proof in Peano arithmetic.”

Nicer example: Kirby-Paris version of Goodstein sequences: write m as a
sum of powers of n. Write each exponent as the sum of powers of n.
Repeat with exponents of exponents until a number < n is reached. Then
Gn(m) is the number produced by replacing every n in the representation
with n + 1 and then subtracting 1.

Sequence starts with m, G2(m), then G3(G2(m)), then G4(G3(G2(m))),
etc.
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Some True Statements Have No Proofs

Example of Goodstein sequence:

266 = 28 + 23 + 21 = 223
+ 221+1 + 21 = 2221+1

+ 221+1 + 21

G2(266) = 3331+1
+ 331+1 + 31 − 1 = 3331+1

+ 331+1 + 2
.

= 1038

G3(G2(266)) = 4441+1
+ 441+1 + 1

.
= 10616

G4(G3(G2(266))) = 5551+1
+ 551+1 .

= 1010921

...

Theorem. Every Goodstein sequence eventually ends at 1.

Not provable in Peano arithmetic! But provable in second-order arithmetic.
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Sometimes Things are True for No Good Reason

Physicist Freeman Dyson (1923–2020) once
gave a candidate for a statement that
might be true “for no good reason”:

Numbers that are exact powers of two are
2, 4, 8, 16, 32, 64, 128 and so on. Numbers
that are exact powers of five are 5, 25, 125,
625 and so on. Given any number such as
131072 (which happens to be a power of
two), the reverse of it is 270131, with the
same digits taken in the opposite order.
Now my statement is: it never happens that
the reverse of a power of two is a power of
five.
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Sometimes Things are True for No Good Reason

Another example: abelian cubes in the Tribonacci word.

The Tribonacci word is tr = 010201001020101 · · · , the fixed point of the
morphism sending

0→ 01, 1→ 02, 2→ 0.

An abelian cube is a word of the form xx ′x ′′, where x ′, x ′′ are permutations
of x , like the English word deeded. The order of an abelian cube is |x |.

What are the orders of abelian cubes appearing in tr?

Answer: there is a Tribonacci automaton of 1169 states (!) recognizing
the set of all these orders (expressed in the Tribonacci numeration
system). Probably there is no simple description of what these orders are.
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Some true statements have no short proof

For example:

“This statement has no proof in Peano arithmetic with less than 10100

symbols.”

Friedman: constructed a statement about tree embeddings whose shortest
proof in Peano arithmetic has length A(1000), where A is the Ackerman
function.
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An Example from Automata Theory

Suppose we conjecture that all words satisfy some property.

If this property can be represented by an NFA M = (Q,Σ, δ, q0,F ), then
this conjecture becomes the universality problem: does M recognize Σ∗?

But the universality problem for NFA’s is PSPACE-complete, so probably
there is no efficient algorithm to check universality.

Even worse, we may not even be able to check a possible counterexample
in polynomial time, since there exist NFA’s with O(n) states where the
shortest word not accepted is of length ≥ 2n.
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An Example from Automata Theory

An example:

Ln = {0, 1,#}∗ − { [0]#[1]# · · ·#[2n − 1] },

where [a] is the binary representation of a, padded on the left to make it n
bits long.

It is not hard to construct an NFA Mn for Ln that has O(n) states, while
the shortest (and only) word Mn does not accept is clearly of length
(n + 1)2n − 1.

Jeffrey Shallit Say No to Case Analysis CIAA 2021 11 / 44



Letting a Computer Do the Work

Entringer, Jackson, and Schatz proved that every binary word containing
no squares xx with |x | ≥ 2 is of length ≤ 18. They do so by a case-based
analysis that is displayed in a diagram that takes up an entire page of their
paper:
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Letting a Computer Do the Work

But why do this?

In general, to solve avoidability problems, one can use breadth-first search
to search the tree of possibilities.

Better to have a general-purpose implementation of breadth-first search,
make it publicly available, and report various parameters about the search
(tree depth, number of nodes, maximal examples, etc.).

In the case where the tree is very large, this will be the only sensible way
anyway.
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Letting a Computer Do the Work

Example: in a 2008 paper, we studied self-similarity of words. For x , y
equal-length words, we define A(x , y) = t/|x |, where t is the number of
positions where x and y agree.

A word w is α-similar if

α = sup{A(x , y) : |x | = |y | and xy is a factor of w}.

We showed that no infinite word over a 5-letter alphabet can be
< 2/5-similar, by breadth-first search. Here we had to examine over
200,000 words to prove the result, and this probably has no short proof.
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Algorithmic Case Analysis Prevents Errors

Consider a recent theorem by Cilleruelo and Luca: for every integer base
b ≥ 5, every natural number is the sum of three natural numbers whose
base-b representations are palindromes.

Their 30-page proof required examining a very large number of cases (one
case was labeled IV.5.v.b), and would be rather challenging to verify by
hand.
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Algorithmic Case Analysis Prevents Errors

As it turns out, however, the initial proof had some small, easily-repaired
flaws that were only discovered when the case analysis was programmed
up in Python by Baxter.
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Replacing Case Analysis with Automata

Cilleruelo et al. resolved the sum-of-palindromes problem for bases b ≥ 5.

We decided to tackle the remaining cases 2 ≤ b ≤ 4.

Instead of a long case-based argument, our goal was to solve the problem
using automata.

Basic approach: use nondeterminism to “guess” a representation of a
number as a sum of palindromes, then verify that your guess is correct.

If we create an automaton M that implements this, then we need to show
that L(M) is universal: the base-b representation of every number is
accepted.
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Replacing Case Analysis with Automata

Trouble: for CFL’s universality is undecidable, and for NFA’s universality is
PSPACE-complete.

We succeeded with the following ideas:

Instead of arbitrary palindromes, we restricted our attention to
palindromes of approximately the same length.

Instead of guessing the palindromes in the sum, we guessed the first
halves of the palindromes.

This makes adding them more complicated, but the trick is to
represent N you are trying to write as a sum of palindromes in a
“folded” manner, where the input consists of blocks of two symbols.
The first coordinates correspond to the most-significant digits and the
second coordinates correspond to the least-significant digits, in
reverse.
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Replacing Case Analysis with Automata

With these ideas, we were able to prove:

Theorem. Every natural number is the sum of 4 numbers whose base-2
representation is a palindrome.

We also proved similar results for bases 3 and 4.

All the case analysis was replaced by basic operations on automata.
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Replacing Case Analysis with Automata

Here’s another example where one can replace case analysis with
automata.

Theorem. (Fici-Zamboni) There are exactly 40 distinct infinite binary
words containing, as factors, 10 distinct palindromes.

Their proof required some case analysis.

Instead, let’s view this as an automaton problem.
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Replacing Case Analysis with Automata

Step 1: Let S be a finite set of palindromes over an alphabet Σ.

Then
CΣ(S) := {x ∈ Σ∗ : PalFac(x) ⊆ S}

is regular.

To see this, note that if ` is the length of the longest palindrome in S , then

CΣ(S) =
⋃

t∈P≤`+2(Σ)\S
Σ∗tΣ∗,

where P≤r (Σ) is the set of all palindromes of length ≤ r over Σ.
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Replacing Case Analysis with Automata

Step 2: Let D`(Σ) be the set of finite words over Σ containing at most `
distinct palindromes as factors.

Then

D`(Σ) =
⋃
|S|≤`

S⊆P≤2`−1(Σ)

CΣ(S)

is regular.
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Replacing Case Analysis with Automata

Step 3: Setting ` = 10, and computing D`({0, 1}), we get an automaton
of 280 states recognizing the set of all finite binary words having at most
10 distinct palindromic factors.

We then simply list the infinite paths through this automaton.

Since there are no birecurrent states, all the infinite paths are of the form
uvω for some finite words u, v .

Some of these have only 9 distinct palindromic factors; the remaining ones
give us the list of 40.
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Heuristics Plus Algorithms Can Create Proofs

Idea: use heuristics to find possible routes to a proof. Then use an
algorithm to complete the proof.

Consider the following problem: choose a finite set of unary operations on
languages, such as S = { Kleene closure, complement }.

Start with a language L, and apply the operations of S to L as many times
as you like, and in any order.

(This is the orbit of L under the set S .) How many different languages can
you get?

For the particular S above, the answer is 14; this is a version of the
Kuratowski 14-theorem from topology.
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Heuristics Plus Algorithms Can Create Proofs

We can then try different sets of operations. In 2012, we proved the
following result:

Theorem. For the set of eight operations

S = { Kleene closure, positive closure, complement, prefix, suffix,

factor, subword, and reverse }

the size of the orbit of every language is at most 5676.

Idea: certain finite sequences of composed operations generate the same
language as shorter sequences.
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Heuristics Plus Algorithms Can Create Proofs

For example, if k denotes Kleene closure and c denotes complement, then
kckckck has the same effect as kck .

By generating an extensive list of identities like kckckck ≡ kck , we can do
a breadth-first search over the tree of all sequences of operations,
demonstrating that there is a finite set of sequences that covers all
possibilities.

But which identities are true? Here is where heuristics can help us.
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Heuristics Plus Algorithms Can Create Proofs

We can model all languages with the class of regular languages.

To find an identity, we can apply one list of operations to some
randomly-generated set of regular languages and compare it to the result
of some other list.

If the results agree everywhere, we have a candidate identity we can try to
prove.

When implemented, our procedure generated dozens of identities, most of
which had trivial proofs.

Once we had these identities, we used breadth-first search to prove that
the size of the orbit was finite.
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Decision Procedures

Best of all possible worlds: replace case analysis by a claim that can be
verified with a decision procedure.

One domain where this has been very successful is the combinatorics of
automatic sequences.

A sequence (sn)n≥0 over a finite alphabet is automatic if, roughly
speaking, there is a deterministic finite automaton with output (DFAO)
that, on input the representation of the natural number n in some form,
ends in a state with output sn.
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Decision Procedures

A typical example of the kind of representation we are talking about is
base-2 representation. For automatic sequences, thanks to Büchi and
others there is a decision procedure to answer questions about these
sequences that are phrased in first-order logic.

Let’s look at a specific example. The Thue-Morse sequence

t = (tn)n≥0 = 0110100110010110 · · ·
is an automatic sequence and is generated by the following very simple
automaton. Here the label a/b on a state means that the state is
numbered a and the output associated with the state is b.

0/0

0

1/11
1

0
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Decision Procedures

A word x has period p ≥ 1 if x [i ] = x [i + p] for all indices i that make
sense.
Currie and Saari proved that t has a factor of least period p for all integers
p ≥ 1. Their proof required 3 lemmas, 6 cases, and 3 pages, e.g.:
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Decision Procedures

The Currie-Saari claim about least periods can be phrased in a certain
logical system that is algorithmically decidable, and there is a decision
procedure for it.

This procedure has been implemented in the Walnut theorem prover
written by Hamoon Mousavi, and so we can enter the commands

def tmperi "(p>0) & (p<=n) & Aj (j>=i & j+p<i+n) => T[j]=T[j+p]":

def tmlper "$tmperi(i,n,p) & (Aq (q>=1 & q<p) => ~$tmperi(i,n,q))":

eval currie_conj "Ap (p>=1) => Ei,n (n>=1) & $tmlper(i,n,p)":

which returns TRUE in a matter of .062 seconds of CPU time. Here

tmperi asserts that t[i ..i + n − 1] has period p, and

tmlper asserts that the least period of t[i ..i + n − 1] is p.
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Decision Procedures

A factor is said to be bordered if it begins and ends with the same word in
a nontrivial way, like the English word entanglement. If it is not
bordered, we call it unbordered.

Currie and Saari were also interested in determining all lengths of
unbordered factors in t.

They proved that t has a length-n unbordered factor if n 6≡ 1 (mod 6), but
were unable to find a necessary condition. We can achieve this with
Walnut by writing

def tmfactoreq "At (t<n) => T[i+t]=T[j+t]":

def tmbord "(m>=1) & (m<n) & At (t<m) => $tmfactoreq(i,(i+n)-m,m)":

def tmunbordlength "Ei Am ~$tmbord(i,m,n)":
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Decision Procedures

Running this in Walnut produces the following automaton, which
recognizes the base-2 representation of all n for which t has a length-n
unbordered factor:

0

0

11

2
0

3

1

0

1

0

41 50, 1

0, 1

Theorem. The Thue-Morse sequence t has an unbordered factor of length
n if and only if (n)2 6∈ 1(01∗0)∗10∗1.
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Decision Procedures

Let’s look at one more problem, this time from additive number theory.

The upper Wythoff set U = {2, 5, 7, 10, 13, . . .} is defined to be
{bα2nc : n ≥ 1}, where α = (1 +

√
5)/2 is the golden ratio.

Recently Kawsumarng et al. studied the sumset

U + U = {x + y : x , y ∈ U}.

Using a case-based argument, they constructed a rather complicated
description of this set, noting that it “has some kinds of fractal and
palindromic patterns”.

However, it turns out that the assertion n ∈ U + U is first-order expressible
in a decidable logical theory; this allows us to give a complete description
of U + U as the set of natural numbers whose Fibonacci representation.
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Decision Procedures

U + U = {x + y : x , y ∈ U} is recognized by the following automaton:

0

0

11 20

30

4

1

5
0

6
1

7
0

0

81

9

0

1
100

0
1

11
0

1
0

1

0

Here no explicit breakdown into cases was necessary; instead, the decision
procedure “automatically” constructs the automaton from a description of
U.

The fact that this automaton has so many states and a complicated
structure partially explains why the set U + U is difficult to describe
explicitly.
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Heuristics Plus Decision Procedures Provide Proofs

We can combine the ideas of depth-first or breadth-first search over a
space with a decision procedure to (a) figure out a good candidate for a
solution and then (b) prove it is correct.

As an example, let’s return to automatic sequences.

In 1965, Richard Dean studied the Dean words: squarefree words over
{x , y , x−1, y−1} that are not reducible (that is, there are no occurrences of
xx−1, x−1x , yy−1, y−1y).
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Heuristics Plus Decision Procedures Provide Proofs

Let us use the coding 0↔ x , 1↔ y , 2↔ x−1, 3↔ y−1.

We can use “automatic breadth-first search” to find a candidate for an
infinite Dean word.

In automatic breadth-first search, you guess that the infinite word you
want to construct is k-automatic for some integer k ≥ 2, and generated by
a DFAO of ≤ ` states.

You then use BFS to explore the tree of all w obeying the particular
constraints, such that the smallest k-DFAO generating w has ≤ ` states.
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Heuristics Plus Decision Procedures Provide Proofs

If you are lucky, BFS will converge to the prefixes of a single k-automatic
infinite word (or small number of such words).

When implemented for Dean words, breadth-first search quickly converges
on the sequence

0121032101230321 · · · ,

which (using the Myhill-Nerode theorem) we can guess as the fixed point
of the morphism

0→ 01, 1→ 21, 2→ 03, 3→ 23.
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Heuristics Plus Decision Procedures Provide Proofs

Then we carry out the following Walnut commands:

morphism d "0->01 1->21 2->03 3->23":

promote DE d:

eval dean1 "Ei,n (n>=1) & At (t<n) => DE[i+t]=DE[i+n+t]":

# check if there’s a square

eval dean02 "Ei DE[i]=@0 & DE[i+1]=@2":

eval dean20 "Ei DE[i]=@2 & DE[i+1]=@0":

eval dean13 "Ei DE[i]=@1 & DE[i+1]=@3":

eval dean31 "Ei DE[i]=@3 & DE[i+1]=@1":

# check for existence of factors 02, 20, 13, 31

All of these return FALSE, so this word is a Dean word. We have thus
proved the existence of Dean words with essentially no human intervention.
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Objections and Answers

You’ve replaced a case-based proof with an algorithm, but how do you
know the algorithm is correct?

Answer: Sometimes an implementation will be much simpler than the
record of the cases it examines, so it will actually be easier to verify the
program than the case-based argument.

In other cases, the algorithm can produce a certificate that another,
simpler program can easily verify.

Finally, in addition to formal correctness, there is also empirical
correctness. With a program in hand, we can test it on a wide variety of
different inputs to look for oversights and omissions.
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Objections

Running a program provides no insight as to why a result is true.

Answer: Sometimes there just won’t be a simple reason why a result is
true.

In situations like this, it’s better just to accept the result and move on.
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Objections

Some of the decision procedures you’ve talked about have astronomical
worst-case running times.

Answer: Don’t pay much attention to the worst-case running time of
decision procedures! Even if the running time is nonelementary, it will
often run in a reasonable length of time for the instances we are interested
in.
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A Final Word

This talk has been an argument against the following recommendation:

“A computation is a temptation that should be resisted as long as
possible.” – John P. Boyd, Amer. Math. Monthly 123 (2016) 241.

Not only should you give into the temptation, you should actively seek it
in some cases!
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